Diacidic motif is required for efficient transport of the K+ channel KAT1 to the plasma membrane.

نویسندگان

  • Melanie Mikosch
  • Annette C Hurst
  • Brigitte Hertel
  • Ulrike Homann
چکیده

For a number of mammalian ion channels, trafficking to the plasma membrane was found to be controlled by intrinsic sequence motifs. Among these sequences are diacidic motifs that function as endoplasmic reticulum (ER) export signals. So far it is unclear if similar motifs also exist in plant ion channels. In this study we analyzed the function of four diacidic DXE/DXD motifs of the plant K(+) channel KAT1. Mutation of the first diacidic DXE motif resulted in a strong reduction of the KAT1 conductance in both guard cell protoplasts and HEK293 cells (human embryonic kidney cells). Confocal fluorescence microscopy of guard cells expressing the mutated KAT1 fused to green fluorescent protein revealed localization of the mutated channel only in intracellular structures around the nucleus. These structures could be identified as part of the ER via coexpression of KAT1 fused to yellow fluorescent protein with an ER-retained protein (HDEL) fused to cyan fluorescent protein. Block of vesicle formation from the ER by overexpression of the small GTP-binding protein Sar1 fixed in its GDP-bound form led to retention of wild-type KAT1 in similar parts of the ER. Mutation of the three other diacidic motifs had no effect. Together, the results demonstrate that one diacidic motif of KAT1 is essential for ER export of the functional channel in both guard cell protoplasts and HEK293 cells. This suggests that trafficking of plant plasma membrane ion channels is controlled via a conserved mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective Golgi export of Kir2.1 controls the stoichiometry of functional Kir2.x channel heteromers.

Surface expression of ion channels and receptors often depends on intrinsic sequence motifs that control their intracellular transport along the secretory pathway. Although members of the Kir2.x subfamily share two such motifs - a diacidic ER export motif and a positively charged Golgi export motif - they strongly differ in their surface expression. Whereas Kir2.1 shows prominent plasma membran...

متن کامل

Abscisic Acid Triggers the Endocytosis of the Arabidopsis KAT1 K+ Channel and Its Recycling to the Plasma Membrane

Membrane vesicle traffic to and from the plasma membrane is essential for cellular homeostasis in all eukaryotes. In plants, constitutive traffic to and from the plasma membrane has been implicated in maintaining the population of integral plasma-membrane proteins and its adjustment to a variety of hormonal and environmental stimuli. However, direct evidence for evoked and selective traffic has...

متن کامل

Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane.

Recent findings indicate that proteins in the SNARE superfamily are essential for cell signaling, in addition to facilitating vesicle traffic in plant cell homeostasis, growth, and development. We previously identified SNAREs SYP121/Syr1 from tobacco (Nicotiana tabacum) and the Arabidopsis thaliana homolog SYP121 associated with abscisic acid and drought stress. Disrupting tobacco SYP121 functi...

متن کامل

Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain.

Membrane-embedded voltage-sensor domains in voltage-dependent potassium channels (K(v) channels) contain an impressive number of charged residues. How can such highly charged protein domains be efficiently inserted into biological membranes? In the plant K(v) channel KAT1, the S2, S3, and S4 transmembrane helices insert cooperatively, because the S3, S4, and S3-S4 segments do not have any membr...

متن کامل

The baculovirus/insect cell system as an alternative to Xenopus oocytes. First characterization of the AKT1 K+ channel from Arabidopsis thaliana.

Two plant (Arabidopsis thaliana) K+ transport systems, KAT1 and AKT1, have been expressed in insect cells (Sf9 cell line) using recombinant baculoviruses. Microscopic observation after immunogold staining revealed that the expressed AKT1 and KAT1 polypeptides were mainly associated with internal membranes, but that a minute fraction was targeted to the cell membrane. KAT1 was known, from earlie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 142 3  شماره 

صفحات  -

تاریخ انتشار 2006